
COMBINING SENCHA 

TOUCH AND EXTJS IN 

YOUR PROJECT  

A Journey 

Bilal Soylu 

Sourc{ 2012, London 

 

1 



Agenda 

• About Me 

• The Idea 

• Reviewing MVC 

• The Journey 

• How to take this further 

• QA 

2 



About Me 

• CTO Verian Technologies (www.verian.com) 

• Charlotte, NC, USA 

• Sencha Charlotte User Group Manager 

• Open Source Supporter and Contributor 

 

• @BmanClt 

• http://BonCode.blogspot.com 

 

• I like Dilbert 

3 

http://boncode.blogspot.com/


We all have abundant time and resources! 

4 

If not, it is simple to clone ourselves ! 



5 



6 



The Startpoint 

• Ext code review 

• MVC model introduction in Ext4 and Touch2 

• Appear many similarities that can be used 

• What If ???? 

• Could take the code and move it from Ext4 to Touch2 

• Potential Benefits 

• Higher code reuse 

• Reduce maintenance 

• Reduce future rollout time 

• Reduce cost? 

• Would there be other side benefits / problems?  

7 



The Framework 

8 

C 
controller 

V 
view 

M 
model 

The Model manages the 

behavior and data of the 

application domain, responds to 

requests for information about its 

state (usually from the view), 

and responds to instructions to 

change state (usually from the 

controller). In event-driven 

systems, the model notifies 

observers (usually views) when 

the information changes so that 

they can react. 

The View renders the model into a form 

suitable for interaction, typically a user 

interface element. Multiple views can exist 

for a single model for different purposes. A 

view port typically has a one to one 

correspondence with a display surface and 

knows how to render to it. 

The Controller receives user input and initiates a response by making 

calls on model objects. A controller accepts input from the user and 

instructs the model and a view port to perform actions based on that 

input. 



ExtJS 4 MVC 

C 
controller 

V 
view 

A 
controller 

S 
store 

M 
model 

9 



Sencha Touch 2 MVC 

10 

C 
controller 

V 
view 

A 
controller 

S 
store 

M 
model 

P 
profile 



Approach 1: Let’s just write code 

• Recognize platform 

• Write code in MVC style using Sencha APIs 

• Assume that we have good coverage of class and 

packages in both Sencha libraries 

Platform 

recognition  

Load Touch 

Load ExtJS 

Load 

App 

11 



Platform Recognition 

• Detect browser and deduce platform to load the correct 

library (ExtJS vs Touch) 

• Can be performed by application server 

• Can be a simple js initiator: 

 

12 



13 

1. 



Reusable ? 

14 

C 
controller 

V 
view 

A 
controller 

S 
store 

M 
model 



Using out of the box APIs? Really? 

15 

23% 

77% 

Overlap between ExtJS 4 and Touch 2 
Classes 

Overlap No Overlap



Which packages can be used in both 

(with care) 
Overlap in Packages 

AbstractComponent  

AbstractManager  

Ajax  

app  

ComponentManager  

ComponentQuery  

data  

direct  

fx  

layout  

ModelManager  

Template  

util  

XTemplate  

Action  

Component  

form  

Img  

LoadMask  

picker  

slider  

tab  

Missing one or more classes in Packages 

AbstractPlugin  

app  

chart  

ComponentLoader  

container  

data  

draw  

ElementLoader  

fx  

layout  

panel  

PluginManager  

selection  

state  

util  

view  

button  

dd  

Editor  

flash  

 

FocusManager  

form  

grid  

Layer  

menu  

picker  

ProgressBar  

resizer  

Shadow  

ShadowPool  

slider  

tip  

toolbar  

tree  

window  

ZIndexManager  

 

* Download full analysis spreadsheet from blog (http://www.boncode.net/downloads/ClassAnalysis.xlsx) 

16 



Approach 2: Shared Common Library 

(SCL) 
• Only uses overlapping core libraries and APIs 

• Create shared libraries of classes using: Ext.define()  

• Use them in your code via: Ext.create() 

• Load SCL via “requires” config option 

17 

Platform 

recognition  

Load Touch 

Load ExtJS 

Load 

App 

Load SCL Load MVC 



Approach 2: Model with Shared Common 

Libraries (SCL) 

18 

L 
libraries 

C 
controller 

V 
view 

A 
controller 

S 
store 

M 
model 



Shared Common Libraries Example 

19 



20 

2. 



Still outstanding with Approach 2 

• Event System does not align 

• Tab, DoubleTab, Pinch vs. Click, MouseOut, MouseOver 

• MVC tight coupling to native events 

• View mechanisms do not align 

• Using different controls for UI in touch vs extjs 

• Controllers ? 

21 



Approach 3: SCL and Event System 

22 

C 
controller 

V 
view 

A 
controller 

S 
store 

M 
model 

L 
libraries 

E 
events 



Event System Overlay (Demo) 
• We chose a Publish / Subscribe system because of loose 

coupling of components and flexibility of subscriptions 

 

23 

• Our Event System also acts as Application Message Bus 

Framework 

Event 

Capture 

Stub 

App Event 

Handling 
Application 

Event 

App Event 

Handling 



Moving towards loosely coupled events 

24 

or 

eventRegister(“ui.click.**”,…) 

eventRegister(“ui.click.doubleClick”,…) 



25 

3. 



Still outstanding with Approach 3 

• Views 

• Visual elements will not be the same (difference in platforms) 

• Controls 

• Are tightly coupled to views 

 

• Need something that will express visual content and 

application business logic across frameworks. 

 

26 



Meta Logic / Language 

• Addresses the need for higher level of abstraction 

needed 

• separate design language / commands 

• separate  control language / commands 

• separate flow language / commands 

• Ease of communication the goals and outcomes 

 

 

27 



Approach 4: SCL, Event System, & 

syntax interpreter (SI) for views and logic 

28 

SI 
syntax 

C 
controller 

A 
controller 

S 
store 

M 
model 

L 
libraries 

E 
events 

V 
view 

SI 
syntax 



Design / Control Language 

• Meta Language 

• Used as mechanism for higher level abstraction 

• Choices are available 

• The Language is Interpreted by Syntax(Language) 

Interpreter. Most likely the place where most platform 

specific implementation should be housed. 

• We used XML based and created own dialect 

• Feel free to experiment 

 

29 



Demo: Digging into variants of Approach 4 

• Simple App Definition 

• UI Controls 

 

 

• More complex scenarios 

30 



Solution Spectrum 

31 

Abstraction 

Maintenance 

3 

h
ig

h
 

low 

lo
w

 

high 

2 

1 

4 



Solution Spectrum 

• 1: Using Common API and Platform Detection 

• 2: Apps with shared commons libraries 

• 3: Apps with shared events and commons libraries 

• 4: Interpreted App (with design and control language) 

 

32 



Why / Benefits 

• Goals:  

• higher code re-use, reduced maintenance, faster turn-around, 

easier upgradeability 

• Overcome common hurdles 

• Sencha libraries are large (Learning Curve) 

• Experience with creating apps is limited 

• IDEs are less developed  

• Why XML for Meta Language 

• Well formed XML is easily understood 

• Broad IDE support 

• Can easily be processed and generated on backend 

33 



Alternatives for Meta Language 

• The design language currently used is derived by needs 

of the project. 

• Expanded application scope can also expand the need for 

complex language constructs 

• Workflow (View1 -> View2) 

• Data binding 

• Event binding 

• Exceptions 

• Customizations 

• Inheritance 

 

34 



More options: How to take this further 

• Interpret JSON 

• Use Other Dialects of Design / Control Markup 

• XAML (Microsoft) 

• MXML (Adobe) -- open source 

• Flash builder translates/compiles apps to HTML5/JS/CSS3 from MXML, 

thus should be possible to do this in Ext 

• SmartClient XML 

• Source from DB 

35 



Another Side Effect 

ExtJS 2 

ExtJS 3 

ExtJS 4 

36 



Drawbacks 

• Thinking through unified application and code re-use 

requires extended planning 

• Your application may require platform uniqueness / 

optimizations that are hard to abstract 

• There is no long term investment calculation needed 

• Still need to use platform specific CSS 

 

37 



Summary 

• This may not work for your situation, but if it does, cool ! 

• With planning and design it is possible to re-use 

substantial amounts of code. 

• A code reuse solution does not have to go all the way to 

work for you.  

• Find a degree of abstraction that works for your project 

based on time/value analysis 

• Levels of solution include (each building on the previous) 

• Common Class Libraries 

• Abstracted Event System  

• Abstracted View Definition 

• Abstracted Logic Definition 

38 



THANK YOU 

@BmanClt 

http://BonCode.blogspot.com 

39 


